RESIDUES TO COMMODITIES

Wolter Elbersen TKI-BBE 2019. 8 May 2019

2

How to match the surplus biomass in remote locations with the demand here?

Large volume of lignocellulisic biomass resources, i.e.:

- Agroresidues/waste
- process residues/waste
- post-consumer residues/waste
- lignocellulosic crops (cultivated and marginal lands)

Can be made available if we have the right demand, production chains and technology

We need biomass resources of the right quantity AND quality for an acceptable price @ the right time @ the right place for being refined into a portfolio of biobased products and energy and

energy carriers

We need BIOBASEDCOMMODITIES and a related international trade market

WAGENINGEN

3

Herbaceous biomass is underutilized – Often causing pollution problems - how much can be used for biobased applications? Million hectares Million ton DM crop residue per year 1,038 816 163

316

1,414

4

	Current potential	Used potential		
	Million tons dry	Million tons dry matter per year		
Wood from forests	325	350		
Other forest biomass (forest industries)	185	140		
Agricultural residues (field and agro-industries)	342	15		
Waste	89	60		
Cropped biomass	152	2		

8

Location:	Near the biomass	At a logistical hub (harbour)
Factor		
Cost of biomass	+	-
Biomass security of supply	-	+
Availability of Infrastructure	-	+
Maximum scale	-	+
Efficiency of conversion	-	+
Availability of personnel / expertise	-	+
Value or residues	-	+
Sum	1+	6+

What is a real biomass commodity?

Real commodity	Not a commodity
Easy to store and transport → high energy	Not easy to transport
density, dry, low volume, low asn, nutrient depleted	Not fungible
Fungible → "exchangeable" = standard	No broad standards
quality	No functioning markets or trade
Standardised transport, contracting, standard insurance, etc.	Trust needed between producer and buyer
Standard conversion systems	One on one relations between producer
Functioning markets:	and buyer
Trade systems, Financial instruments	Vertical integration
(futures, etc.)	Less security of supply lager
High tradability	High transaction costs
Sustainability	Inefficient
Standard certification systems	
- Hile-	
WAGENINGEN	
Ministration of Parameters and American	12

12

Results fo	Results for oil palm residues (EFB)			
EFB		Before	After	
Ash (550 °C)	(% of DW)	4.64	1.85	
Ash (815 °C)	(% of DW)	3.77	1.73	
s	(% of DW)	0.063	0.023	
c	(% of DW)	0.38	0.024	
SiO ₂	(% of ash 815 °C)	30.8	33.5	
Al ₂ O ₃	(% of ash 815 °C)	0.53	0.92	
TiO ₂	(% of ash 815 °C)	< 0,1	< 0,1	
P ₂ O ₅	(% of ash 815 °C)	4.87	10.1	
SO ₃	(% of ash 815 °C)	1.89	9.54	
Fe ₂ O ₃	(% of ash 815 °C)	0.99	1.11	
CaO	(% of ash 815 °C)	4.35	17.9	
MgO	(% of ash 815 °C)	9.51	12.7	
Na ₂ O	(% of ash 815 °C)	2.93	0.78	
К20	(% of ash 815 °C)	37.8	12.7	
Mn ₃ O ₄	(% of ash 815 °C)	0.12	0.26	
SST	°C	990	1080	
DT	۰C	1210	1120	
нт	۰C	1250	1160	
UNIVERSITY & RESEARCH	~			

14

Pellets as Biocommodity?

- Traditionally produced
- Min 25.000 ton per year
- Easy transport
- Easy storage
- Pellet production should costs
 € 35 to €55,-/ton
- No standards for non-wood?
- No transparent market, cost of transport
- Reliability of transport, contractibility

WAGENINGEN

How to get there?

- Develop local biorefinery systems with relatively small economy of scale (30.000 ton per year) to remove nutrients, protein and water and produce a lignocellulosic commodity
- Define only a few biomass commodities that cover
 All lignocellulosic biomass types (wood, EFB, trunks, grass, straw, bagasse, etc.)
 - All applications: heat, co-firing, biorefinery, etc.
- Set wide standards (if possible) and avoid frivolous demands
- Involve all players in the production chain (biomass producers, machine builders, regulators, insurers, bankers, transport, final users)

16

17

18

.

WAGENINGEN

Questions

How much biomass will we need? 2020? 2030? 2050?
How should the biomass be used in 2020? 2030? 2050?
What are the biomass commodities we should focus on?

- How do we mobilize this biomass? From where?
- Shoudl we trun Dutch biomass into commodities?

V.

<text><text><image>

21

20

Trash vs Baga	sse quality				
		Trash			Bagasse
		Dry leaves	Green	Tops	
		% of DM weight			
	Ton DM per hectare	11.8	1.6	0.3	
	Moisture content	13.5	67.7	82.3	50.2
	Ash	3.9	3.7	4.3	2.2
	Fixed carbon	11.6	15.7	16.4	18.0
	Volatile matter	84.5	80.6	79.3	79.9
All-mail Provide A	C	46.2	45.7	43.9	44.6
	н	6.2	6.2	6.1	5.8
A DOWN OF THE OWNER	N	0.5	1.0	0.8	0.6
State Street 1	0	43.0	42.8	44.0	44.5
	S	0.1	0.1	0.1	0.1
100	CI	0.1	0.4	0.7	0.02
		g/kg DM			
	P205	0.5	2.0	2.5	0.5
	<u>K20</u>	2.7	13.3	29.5	1.7
A CONTRACTOR OF THE OWNER	CaO	4.7	3.9	2.6	0.7
Calman and Calman	MgO	2.1	2.2	2.5	0.5
and the second se	Fe2O3	0.9	0.5	0.2	2.3
the same and and	AI2O3	3.5	1.4	0.5	2.3
pr					Hasuani et al 2005